Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Elife ; 122023 02 08.
Article in English | MEDLINE | ID: covidwho-2236574

ABSTRACT

During respiratory viral infections, the precise roles of monocytes and dendritic cells (DCs) in the nasopharynx in limiting infection and influencing disease severity are incompletely described. We studied circulating and nasopharyngeal monocytes and DCs in healthy controls (HCs) and in patients with mild to moderate infections (primarily influenza A virus [IAV]). As compared to HCs, patients with acute IAV infection displayed reduced DC but increased intermediate monocytes frequencies in blood, and an accumulation of most monocyte and DC subsets in the nasopharynx. IAV patients had more mature monocytes and DCs in the nasopharynx, and higher levels of TNFα, IL-6, and IFNα in plasma and the nasopharynx than HCs. In blood, monocytes were the most frequent cellular source of TNFα during IAV infection and remained responsive to additional stimulation with TLR7/8L. Immune responses in older patients skewed towards increased monocyte frequencies rather than DCs, suggesting a contributory role for monocytes in disease severity. In patients with other respiratory virus infections, we observed changes in monocyte and DC frequencies in the nasopharynx distinct from IAV patients, while differences in blood were more similar across infection groups. Using SomaScan, a high-throughput aptamer-based assay to study proteomic changes between patients and HCs, we found differential expression of innate immunity-related proteins in plasma and nasopharyngeal secretions of IAV and SARS-CoV-2 patients. Together, our findings demonstrate tissue-specific and pathogen-specific patterns of monocyte and DC function during human respiratory viral infections and highlight the importance of comparative investigations in blood and the nasopharynx.


Subject(s)
COVID-19 , Communicable Diseases , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Humans , Aged , Monocytes , Tumor Necrosis Factor-alpha/metabolism , Proteomics , COVID-19/metabolism , SARS-CoV-2 , Dendritic Cells
2.
Nat Med ; 27(4): 659-667, 2021 04.
Article in English | MEDLINE | ID: covidwho-1104522

ABSTRACT

To identify circulating proteins influencing Coronavirus Disease 2019 (COVID-19) susceptibility and severity, we undertook a two-sample Mendelian randomization (MR) study, rapidly scanning hundreds of circulating proteins while reducing bias due to reverse causation and confounding. In up to 14,134 cases and 1.2 million controls, we found that an s.d. increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (odds ratio (OR) = 0.54, P = 7 × 10-8), hospitalization (OR = 0.61, P = 8 × 10-8) and susceptibility (OR = 0.78, P = 8 × 10-6). Measuring OAS1 levels in 504 individuals, we found that higher plasma OAS1 levels in a non-infectious state were associated with reduced COVID-19 susceptibility and severity. Further analyses suggested that a Neanderthal isoform of OAS1 in individuals of European ancestry affords this protection. Thus, evidence from MR and a case-control study support a protective role for OAS1 in COVID-19 adverse outcomes. Available pharmacological agents that increase OAS1 levels could be prioritized for drug development.


Subject(s)
2',5'-Oligoadenylate Synthetase/physiology , COVID-19/etiology , Genetic Predisposition to Disease , SARS-CoV-2 , 2',5'-Oligoadenylate Synthetase/genetics , Aged , Aged, 80 and over , Animals , COVID-19/genetics , Case-Control Studies , Female , Humans , Interleukin-10 Receptor beta Subunit/genetics , Male , Mendelian Randomization Analysis , Middle Aged , Neanderthals , Protein Isoforms/physiology , Quantitative Trait Loci , Severity of Illness Index , White People
SELECTION OF CITATIONS
SEARCH DETAIL